

PERRY JOHNSON LABORATORY ACCREDITATION, INC.

Certificate of Accreditation

Perry Johnson Laboratory Accreditation, Inc. has assessed the Laboratory of:

Asesoría y Equipos de Inspección, S.A. de C.V.(AEISA)

Calle Lucas Alamán # 1109, Colonia Bella Vista Monterrey, Nuevo León, México. C.P. 64410

(Hereinafter called the Organization) and hereby declares that Organization is accredited in accordance with the recognized International Standard:

ISO/IEC 17025:2017

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (as outlined by the joint ISO-ILAC-IAF Communiqué dated April 2017):

Dimensional, Optical, Electrical and Mechanical Calibration (As detailed in the supplement)

Accreditation claims for such testing and/or calibration services shall only be made from addresses referenced within this certificate. This Accreditation is granted subject to the system rules governing the Accreditation referred to above, and the Organization hereby covenants with the Accreditation body's duty to observe and comply with the said rules.

For PJLA:

Tracy Szerszen President

Perry Johnson Laboratory Accreditation, Inc. (PJLA) 755 W. Big Beaver, Suite 1325 Troy, Michigan 48084 ${\it Initial Accreditation Date:}$

Issue Date:

Expiration Date:

July 20, 2018

June 16, 2022

September 30, 2024

Accreditation No.:

Certificate No.:

95343

L22-439

The validity of this certificate is maintained through ongoing assessments based on a continuous accreditation cycle. The validity of this certificate should be confirmed through the PJLA website: www.pjlabs.com

Certificate of Accreditation: Supplement

Asesoría y Equipos de Inspección, S.A. de C.V. (AEISA)

Calle Lucas Alamán # 1109, Colonia Bella Vista Monterrey, Nuevo León, México. C.P. 64410 Contact Name: Edgar Escalante Phone: 818-374-1428

Accreditation is granted to the facility to perform the following calibrations:

Dimensional

2 11114110101141			
MEASURED INSTRUMENT,	RANGE OR NOMINAL DEVICE	CALIBRATION AND	CALIBRATION
QUANTITY OR GAUGE	SIZE AS APPROPRIATE	MEASUREMENT	EQUIPMENT
		CAPABILITY EXPRESSED	AND REFERENCE
		AS AN UNCERTAINTY (±)	STANDARDS USED
Ultrasonic Thickness	2.54 mm to 12.7 mm	0.8 µm	Five Step Block
Gages ^{FO}			ASTM-E317 6.7
Ultrasonic Flaw	25.4 mm to 254 mm	5 μm	IIW Type 2 Block
Detector ^{FO}			ASTM-E317 6.2, 6.3.2

Optical

Optical		•	
MEASURED INSTRUMENT,	RANGE OR NOMINAL DEVICE	CALIBRATION AND	CALIBRATION
QUANTITY OR GAUGE	SIZE AS APPROPRIATE	MEASUREMENT	EQUIPMENT
		CAPABILITY EXPRESSED	AND REFERENCE
		AS AN UNCERTAINTY (±)	STANDARDS USED
Light Meter Irradiance	100 μW/cm ² to 10 000 μW/cm ²	3.7 % of reading	Sensor XDS-1000
Ultraviolet Light			Radiometer XR-1000 C
At Listed Wave Lengths			ASTM-E1417 7.8.4.4
320 nm to 400 nm ^F			ASTM-E1444 7.4.7
Light Meter Illuminance	1 lux to 5 000 lux	1.6 % of reading	Sensor XDS-1000
Visible Light			Radiometer XR-1000 C
At Listed Wave Lengths			ASTM-E1417 7.8.4.4
460 nm to 675 nm ^F			ASTM-E1444 7.4.7
Transmission	0.8 D to 1 D	3.1 % of reading	X-Ray Film Step Tablet
Densitometer ^F	2 D to 2.5 D	3 % of reading	ASTM-E1079
	3.5 D to 4 D	3 % of reading	

Electrical

MEASURED INSTRUMENT,	RANGE OR NOMINAL DEVICE	CALIBRATION AND	CALIBRATION
QUANTITY OR GAUGE	SIZE AS APPROPRIATE	MEASUREMENT	EQUIPMENT
		CAPABILITY EXPRESSED	AND REFERENCE
		AS AN UNCERTAINTY (±)	STANDARDS USED
Magnetic Particle	50 A to 20 000 A	0.1 % of reading	Resistance Shunt
Inspection Devices	0.1 s to 4 s	0.013 s	Multimeter, Shot Timer \
Current AC/DC TimeFO			Oscilloscope
			ASTM-E709 20.3.1, 20.3.2
			ASTM-E1444 7.4.1, 7.4.2
Gauss Meters ^{FO}	-200 G to 200 G	4.5 % of reading	Gauss Fixture
			Series 5000 F.W. Bell
			ASTM-E709 and
			ASTM-E1444

Certificate of Accreditation: Supplement

Asesoría y Equipos de Inspección, S.A. de C.V. (AEISA)

Calle Lucas Alamán # 1109, Colonia Bella Vista Monterrey, Nuevo León, México. C.P. 64410 Contact Name: Edgar Escalante Phone: 818-374-1428

Accreditation is granted to the facility to perform the following calibrations

Mechanical

1,100110111001			
MEASURED INSTRUMENT,	RANGE OR NOMINAL DEVICE	CALIBRATION AND	CALIBRATION
QUANTITY OR GAUGE	SIZE AS APPROPRIATE	MEASUREMENT	EQUIPMENT
		CAPABILITY EXPRESSED	AND REFERENCE
		AS AN UNCERTAINTY (±)	STANDARDS USED
Indirect Verification of	700 HLD to 800 HLD	9.4 HLD	Test Block
Leeb, Hardness Tester			ASTM A956
HLD ^F			

- 1. The CMC (Calibration and Measurement Capability) stated for calibrations included on this scope of accreditation represents the smallest measurement uncertainty attainable by the laboratory when performing a more or less routine calibration of a nearly ideal device under nearly ideal conditions. It is typically expressed at a confidence level of 95 % using a coverage factor k (usually equal to 2). The actual measurement uncertainty associated with a specific calibration performed by the laboratory will typically be larger than the CMC for the same calibration since capability and performance of the device being calibrated and the conditions related to the calibration may reasonably be expected to deviate from ideal to some degree.
- 2. The laboratories range of calibration capability for all disciplines for which they are accredited is the interval from the smallest calibrated standard to the largest calibrated standard used in performing the calibration. The low end of this range must be an attainable value for which the laboratory has or has access to the standard referenced. Verification of an indicated value of zero in the absence of a standard is common practice in the procedure for many calibrations but by its definition it does not constitute calibration of zero capacity.
- 3. The presence of a superscript F means that the laboratory performs calibration of the indicated parameter at its fixed location. Example: Outside Micrometer would mean that the laboratory performs this calibration at its fixed location.
- 4. The presence of a superscript FO means that the laboratory performs calibration of the indicated parameter both at its fixed location and onsite at customer locations. Example: Outside Micrometer^{FO} would mean that the laboratory performs this calibration at its fixed location and onsite at customer locations.
- 5. Measurement uncertainties obtained for calibrations performed at customer sites can be expected to be larger than the measurement uncertainties obtained at the laboratories fixed location for similar calibrations. This is due to the effects of transportation of the standards and equipment and upon environmental conditions at the customer site which are typically not controlled as closely as at the laboratories fixed location.